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Abstract--The onset of convection when a porous layer underlying a fluid layer is heated from below has 
been numerically investigated. In order to validate the interface boundary conditions along with the 
numerical scheme, the present study has focused on the critical Rayleigh number and the corresponding 
number of cells. In addition, the effects of the Rayleigh number, aspect ratio and thickness ratio on 
supercritical convection in the composite layer have been investigated. The results show that the number 
of cells at the critical Rayleigh number (Rape) is in good agreement with the previous report based on the 
linear stability theory. The abrupt change in convective flow patterns accurately verifies the precipitous 
drop of Rap~ with the increasing the depth ratio (d) and the rapid change of the wave number (ap) near 
d = 0.12. As Rap increases, the cell size changes for all depth ratios (d = 1.0, 0.5, 0.2, 0.1 and 0). In 
particular, heat transfer rate changes dramatically due to the effects of the aspect ratio and the corresponding 

number of cells when d = 0.1. 

1. INNRODUL~rlON 

Thermal and chemical interaction between a saturated 
porous layer and an overlying fluid layer can be en- 
countered in many engineering and environmental 
applications. A typical example of this configuration is 
the liquid alloys above the frozen alloys at the bottom, 
separated by a mushy zone, when the mold containing 
concentrated alloys is cooled from below for direc- 
tional solidification. The mushy zone consisting of 
dendrites immersed in the melt can be modeled as a 
porous medium with variable permeability in theor- 
etical and computational investigations. Another 
interesting application can be found in the accurate 
modeling of boundary conditions at the soil and water 
interface. Over the past decade, there has been increas- 
ing concern about soil and water contamination from 
industrial and agricultural chemicals. Therefore, an 
understanding of the transport phenomena from soil 
to water, and vice versa, and of the corresponding 
interface boundary conditions has become important. 
To model the interface boundary conditions and to 
confirm the accuracy, the energy equation instead of 
the chemical transport equation can be chosen 
because of the mathe~aatical similarity of those equa- 
tions. In addition, the study can also be applied to 
many other practical problems such as packed-bed 
thermal storage systems, fibrous granular insulation 
and porous journal bearing, to name a few. Prasad [1] 

reported an extensive review of this subject, and Nield 
and Bejan [2] devoted a section to it in their book on 
convection in porous media. 

The onset of convection when a porous layer under- 
lying a fluid layer is heated from below was first studied 
by Sun [3]. From a linear stability analysis, the critical 
Rayleigh number in the porous medium was found to 
decrease continuously as the thickness ratio of the 
fluid layer to the porous layer increases. Later Chen 
and Chen [4] found that Sun [3] had overlooked the 
bimodal nature of the marginal stability curve. Their 
results clearly showed two relative minima at low 
thickness ratio. They also found that there exists a 
critical thickness ratio at which the critical wavelength 
decreases by almost one order of magnitude. Later 
Chen and Chen [5] performed a series of experiments 
to verify their theoretical results. They observed that 
the porous-layer-dominated convection changes to 
the fluid-layer-dominated convection as the thickness 
ratio increases. 

In an effort to obtain information for supercritical 
convection phenomena, Poulikakos [6] studied the 
same problem of flow instability in a horizontal com- 
posite layer bounded by four solid walls. Using a 
control-volume-based finite difference method, he 
observed significant flow penetration from the fluid 
layer into the porous layer for a Darcy number of 
10 -4 . His numerical investigation was based on the 
Darey-Brinkman-Forchheimer equation for the 
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NOMENCLATURE 

A aspect ratio, H/L 
a n wavenumber for the porous layer 
c specific heat 
d depth ratio, hr/hp 
Da Darcy number, K/ H 2 
F Forchheimer number 
g gravity constant 
H total thickness of fluid and porous 

layers 
hf, hp thickness of fluid and porous layers 
k thermal conductivity 
K permeability 
L horizontal length of the calculation 

domain 
n number of iterations 
N number of cells 
Nu Nusselt number, equation (14c) 
p pressure 
Pr Prandtl number, v/s o 
Ra Rayleigh number for the fluid layer, 

gfi( To-  T,)h3 / w  
Rail Rayleigh number based on H, 

gfl( Tb-- Tt) H3 /vc¢ 
Rap Rayleigh number for the porous layer, 

gfl( Tb-  To)hpK/vo~eo- 
S source team 

T temperature 
v velocity vector (u, v) 
x, y horizontal and vertical coordinates. 

Greek symbols 
thermal diffusivity of fluid 

7~, thermal diffusivity of porous medium 
fl thermal expansion coefficient of fluid 

vorticity 
0 dimensionless temperature 
2 wavelength 
AH inertia parameter, F~H/~/K 
v kinematic viscosity 
p density 
4) porosity 
~b stream function. 

Subscripts 
eft effective thermophysical properties 
f, p fluid and porous layers 
o interface 
t, b top and bottom boundaries. 

Superscripts 
* dimensionless parameters. 

porous layer. In his study, the conductivity of the 
porous medium was always equal to that of the fluid. 
Recently, Chert and Chen [7] performed a numerical 
investigation of the same problem using a combined 
Galerkin and finite difference method. They varied the 
Rayleigh number of the porous layer up to 20 times 
the critical Rayleigh number. The horizontal extent of 
the computational domain for all supercritical Ray- 
leigh numbers was fixed to one critical wavelength, 
which they had predicted earlier at onset by the linear 
stability theory. They imposed periodic conditions on 
the lateral boundaries. The Nusselt number for the 
thickness ratio less than the critical value was found 
to increase with the Rayleigh number of the porous 
layer, while the increase was rather moderate at a 
larger thickness ratio. Their numerically predicted 
Nusselt numbers agreed well with the experimental 
results. Prasad et al. [8] and Prasad and Tian [9] con- 
ducted a flow visualization study in a cylindrical cavity 
heated from below. They observed that the number 
of convective cells in the composite layer depends on 
the Rayleigh number, the Darcy number, the thick- 
ness ratio and the aspect ratio. 

The purpose of the present investigation is, first, to 
understand the convective and diffusive phenomena 
between porous and overlying fluid layers. Second, 
the present calculations will focus on validating the 
accuracy of the interface boundary conditions along 
with the numerical scheme by extending the previous 

studies [4~7] from the onset of natural convection to 
supercritical Rayleigh number convection. Therefore, 
the critical Rayleigh numbers based on the linear sta- 
bility theory will be numerically verified. In addition, 
the effects of the Rayleigh number, aspect ratio and 
thickness ratio on the fluid flow and heat transfer will 
be studied. The present investigation will provide a 
fundamental framework for predicting heat transfer, 
chemical diffusion and fluid flow between a fluid and 
a saturated porous medium. 

2. FORMULATION 

2.1. Mathematical formulation 
The coordinate system and the corresponding 

physical configuration are shown in Fig. 1. The thick- 
ness of the fluid-saturated porous layer is hp and the 
thickness of the fluid layer is hr. The porous layer has 

H Tt 

~g 

Yt_. 
Fig. 1. Schematic of porous and overlying fluid layers heated 

from below. 
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viscosity Pen and thermal conductivity kerr, while the 
overlying fluid layer has viscosity #f and thermal con- 
ductivity kf. The bottom wall is maintained at constant 
temperature Tb and the upper wall is held at Tt. It is 
assumed that the flow is steady, laminar, incom- 
pressible and two-dimensional. In addition, the 
thermophysical properties of the fluid and the porous 
matrix are assumed to be constant, and the fluid- 
saturated porous medium is considered homogeneous 
and isotropic and in local thermodynamic equilibrium 
with the fluid. The conservation equations for mass, 
momentum and energy in the fluid region are 

V ' v = 0  

v 'Vv = - 1--Vp+vfV2v+g 

(1) 

(2) 
Pf 

v ° V T  = ~f7 2 T. (3) 

The conservation equations for the porous region are 
based on a general flow model, which includes the 
effects of flow inertia as well as friction caused by 
macroscopic shear. This generalized flow model was 
semi-empirically derived and is known as the Brink- 
man-Forchheimer-extended Darcy model [10, l 1]. 
The governing equations for the porous layer are 

V-v = 0 (4) 

--  Yf ~ K  v ' V v - -  - - 1 V p + v e r r V Z v - ~ . v - - - I v l v + g  (5) 
Pf 

v" VT = oe~f~V 2 T (6) 

where the effective thermal diffusivity cte~ is defined as 
ctog = kefd(pfcf). The appropriate boundary conditions 
for the present problem are 

u = 0  v = 0  T = T b  at y = 0  (7a) 

u = 0  v = 0  T =  Tt at y = H  (7b) 

3T 
u = 0  v = 0  f f £ = 0  at x = 0  and L. (7c) 

In addition, the following matching conditions have 
to be satisfied at the interface of the porous/fluid layer : 

Uly=h; = Uly=h+ vl,,=h; --- vly=h; (8a) 

Ply=by = Ply=hg (8b) 

T]y=.; = T[y=h; ko. ~ = kf 
3T 

oy ly=h; 3y y=h;" 

(8d) 

These conditions express the continuity of longi- 
tudinal and transverse velocities, pressure, deviatoric 
normal and shear stresses, temperature and the heat 
flux. Equation (8b) implies the matching condition of 
the total normal stress at the interface. The condition 
in equation (8c) represents the matching shear stress, 

which is an extension of the condition used by Neale 
and Nader [12] and Vafai and Kim [13] for flow that 
is not parallel to the porous/fluid interface. Some 
controversy still exists over which boundary con- 
ditions should be used at the interface. Some inves- 
tigators prefer to use Beavers and Joseph's slip vel- 
ocity condition at the interface with the Darcy flow 
model. Others prefer boundary conditions [equations 
(8a)-(8d)] with the general flow model because it 
enables them to incorporate the single domain 
approach. Kaviany [11] presented a thorough review 
on the slip coefficient, which depends on the interfacial 
location, the particle Reynolds number, the gap size, 
the permeability, the porosity, the surface structure of 
the porous medium, etc. In this paper the single- 
domain approach, which will be explained later, was 
adopted in order to examine its accuracy. This is also 
effective for studying the motion of the fluid in the 
region which is partially filled with a porous medium 
and partially filled with a regular fluid. The effective 
viscosity in the porous medium can be approximated 
to be equal to the fluid viscosity as in Neale and Nader 
[12]. In addition, the effect of the thermal dispersion 
in the porous matrix is assumed to be constant and is 
incorporated in the effective thermal conductivity for 
simplicity in the presentation of the results. 

2.2. Numerical simulation 
In modeling a composite fluid and porous system, 

one can use the two-domain approach where fluid 
and porous layers are treated separately with coupling 
conditions at the interface. This approach, however, 
would require an involved iterative procedure for 
matching the interface conditions. A more efficient 
alternative is to use the continuum approach where 
two sets of equations for the fluid and the porous 
regions are combined into one set of conservation 
equations [14]. In other words, both the porous and 
the fluid layers can be modeled as a single domain 
governed by one set of equations, the solution of 
which satisfies the continuity of the velocity, stress, 
temperature and the heat flux across the porous/fluid 
interface as described in equations (8a)-(8d). 

By introducing the stream function and the vorticity 
as 

30 3¢ v=-3  

3v 3u 
Ox 3y 

equations (4)-(6) become the dimensionless vorticity 
transport equation, stream function equation and 
energy equation, respectively. These equations are 
valid throughout the composite layer. 

3~* 0~* ad/* 3~* _ P r V 2 ~ , + p  r 30 , 
3y* 3x* 3x* 3y* Ran ~x* + S 

(9) 
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v ~ o ,  = _ ; ,  

0~" 00" Off* OO* _ v . f k v o  ~ 
Oy* #x* ff~x* Oy ~  ;ff ) 

where in the fluid layer 

S* = 0 k = kf 

and in the porous layer 

S *  - 
PF 

~* - AH~/[(U*) 2 + (v*)21~ * 
Dan 

Note that all the variables have been 
sionalized based on the following definitions : 

x v* v Hu Hv 
x * = ~  . = H  u * = - -  v * = - -  

~f  0(f 

0"= 0 ~*= g2~ 0= r - r t  
~f ~f Tb -  Tt" 

The dimensionless boundary conditions are 

u * = 0  v * = 0  0 =  1 at y * = 0  

u * = 0  v * = 0  0 = 0  at y * =  1 

00 
u * = 0  c * = 0  ~ = 0  at x * = 0  and 

(10) 

(11) 

(12a) 

k ~ keff. 

(12b) 

non-dimen- 

(13a) 

(13b) 

L/H. 

(13c) 

A control-volume-based finite difference method 
was employed to solve the system of partial differential 
equations for the vorticity, stream function and tem- 
perature [15]. The control-volume formulation has 
an attractive feature, i.e. the resulting solution would 
imply that the integral conservation of mass, momen- 
tum and energy is satisfied over the entire domain as 
well as any group of control volumes. The harmonic 
mean formulation was used to handle abrupt vari- 
ations in the thermophysical properties, such as the 
permeability and thermal conductivity, across the 
interface. This ensured the continuity of convective 
and diffusive fluxes across the interface without 
requiring the use of an excessively fine grid structure. 

The finite difference equations were solved by the 
extrapolated Jacobi scheme. This iterative scheme is 
based on a double cyclic routine, which translates into 
a sweep of only half of the grid points at each iteration 
step [16]. The present FORTRAN program was vec- 
torized so that it was used efficiently when processed 
on a Convex 240 mini-supercomputer. It was also 
necessary to use underrelaxation to ensure conver- 
gence. 

Small perturbations may be included as part of the 
initial conditions, and stability and instability may be 
differentiated by the decay or growth of the per- 
turbations. In the present study, however, the propa- 
gation of the bottom boundary condition naturally 
caused the initial disturbance after a few iterations. 
Such a disturbance would either trigger the instability 

or be suppressed depending upon the Rayleigh 
number. 

Additional calculations were carried out in order to 
evaluate the effects of the porous material on the heat 
transfer rate at the horizontal bounding walls. The 
results for the heat transfer rate were represented in a 
dimensionless form of the Nusselt number, i.e. at the 
lower wall the Nusselt number can be expressed as 

Q 
NUb = k¢~(L/hp)(T~- Tl,=hp) 

( kf hf~hp fL/H ~O y.= 0 
= ~ + h p J L J o  ~x* dx* (14a) 

and at the upper wall 

O 
NU t = kf(L/hf)(Tl)=h p -  Tt )  

kf hf~hp ~L/H ~0 
= ~ + / ~ p ) Z J  ° O~y ,=  dx* (14b) 

and therefore, the overall averaged Nusselt number is 

Nu t q- Nu b 
Nu = 2 (14c) 

Note that these Nusselt numbers are unity when the 
heat is transferred only by conduction. Also the Nus- 
selt number results are proportional to the overall 
heat flux through the bottom and the top walls, and 
therefore they were used as an additional check to 
ensure the overall energy balance. The difference 
between NUb and N u  t w a s  within 1% for the present 
study. 

2.3. Stability and accuracy of the numerical scheme 
The numerical integration was performed until the 

following convergence criterion was satisfied : 

n + l  n 
max ¢;:J - 0 0  < 10-6 (15) 

where q~ stands for ~*, ~,* and 0, and n denotes the 
iteration number. The stability of the numerical 
scheme was found to be somewhat insensitive to the 
choice of grid size. We employed a proper com- 
bination of Ax and Ay to assure stability. This was 
done by a systematic decrease in the grid size until 
further refinement of the grid size showed no more 
than 1% difference in the convergent results. The 
physical domain was covered by a non-uniform rec- 
tangular grid system consisting of m horizontal and n 
vertical lines. After extensive test runs, either 82 × 82 
or 164 x 82 non-uniform grids were chosen and used 
depending upon the depth ratio and the corresponding 
aspect ratio. In particular, the grid size was carefully 
selected in order to obtain an accurate number of the 
recirculation cells for each case. Calculations were 
made for the parameters used by Chen and Chen [7] 
for the purpose of comparison, i.e. ¢ (porosity)= 
0.389, Dap = K/h 2 = 0.8897 x 10-5 and kdk p = 0.725. 
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3. RESULTS AND DISCUSSION 

To qualify the present numerical code, two sets of 
numerical results were obtained for the well-known 
Brnard convection problem. First, with the fluid layer 
only, the present numerical code slightly underpredicts 
the Nusselt number compared with Silverton's exper- 
imental data [17] as shown in Fig. 2(a). The critical 
Rayleigh number is found to be approximately 1780, 
while the value is 1708 from the linear stability analysis. 
The delay of the onset of the natural convection is due 
to the influence of the lateral walls on the convective 
process. As Catton [18, 19] indicated, lateral walls intro- 
duce additional viscous shear, which delays the onset of 
motion in a fluid layer. The regression line based on the 
present numerical data is slightly upwardly convex, and 
such a trend is reasonable considering the additional 
empirical data points at higher Ra. On the other hand, 
Fig. 2(b) shows that the critical Rayleigh number for 
the porous medium is approximately 40, which is quite 
close to the 4n 2 determined by the linear stability theory. 
When Rap increases in the supercritical range, the Nus- 
selt numbers determined by the present numerical code 
are close to the regression lines by Elder and by Buretta 
and Berman (summarized in ref. [20]). When the aspect 
ratio is four, an abrupt change of the slope in Nu is 
observed as Rap increases from 60 to 70. Such a trend is 
mainly due to the restructuring of the recirculating cells 
within the limited space, and the number of cells is 
continuously increasing as Rap increases. As expected, 
the change of the slope has been rather smoothed when 
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Fig. 2. Benchmark solutions for (a) a fluid layer (A = 8) and 
(b) a porous layer (A = 4 and 8). 

the aspect ratio is doubled. Poulikakos [21] also reported 
the significant effects of aspect ratio on maximum tem- 
perature in a beat-generating porous cavity largely due 
to the varying number of cells. 

In an effort to simulate convective phenomena and 
compare with the previous results [4] without restrict- 
ing the size of cells, a different aspect ratio (A = H/L) 
was chosen for each depth ratio (d = hf/hp) with care- 
ful consideration of the expected cell size based on the 
linear stability [4, 7]. For  d = 1, the aspect ratio is 
chosen as 5. For  Rap < Ra w, the Nusselt number is 
unity, which indicates that the heat transfer is due 
solely to conduction. At Rap = Raw, the Nusselt num- 
ber remains unity, and as shown in Fig. 3(g), the 
horizontal isotherms indicate that no fluid motion has 
yet occurred. However, the initial formation of  nine 
recirculating cells is shown in Fig. 3(a), although the 
streamlines are physically meaningless (i.e. the dimen- 
sional velocities based on ~ are so small as to be 
negligible). It should be noted~that the calculations at 
and near the onset point require an excessive number 
of iterations. Consequently, extreme care was taken 
to ensure that the further iteration would not 
change the present results. The total number of the 
cells (N) can be transformed to the wavenumber 
(ap) as 

2r~ nN 
(16) 

a p  - -  ~. A(1 + d )  

where 2 indicates the wavelength. For  d = 1 and 
A = 5, therefore, the wavenumber becomes 2.83 com- 
pared with 2.86 calculated by the linear stability theory 
[7]. When Rap = 1.1Rap~, as shown in Fig. 3(b) and 
(h), the isotherms are slightly wavy in the fluid region 
because of the weak fluid motion after the onset of 
natural convection. As Rap/Ra~ increases to 1.5 and 
higher, the number of cells increases continuously, 
and the corresponding isotherms show active natural 
convection. Figures 3(f) and (1) show 16 cells and 
vigorous thermal plumes due to strong natural con- 
vection at Rap/Rap~ = 20. It is interesting to observe 
that even the streamlines at Rap/Rape = 20 do not 
penetrate the porous layer, and consequently the heat 
transfer mode is conduction in that region. 

As mentioned earlier, Chen and Chen [7] performed 
numerical calculations with the computational 
domain equal to the critical wavelength for all super- 
critical cases. Their results showed that the changes in 
Nu were reasonably small at various ap and justified 
the use of the cell size based on the critical wave- 
number. With the present numerical scheme, the 
results for ap and Nu were obtained and compared 
with the previous data. Figure 4 shows that the wave- 
number, and thus the number of  cells, increases as Rap 
increases. The present results somewhat under- 
estimate Nu, and the assumption made by Chen and 
Chen [7] was in fact reasonable for this particular 
depth ratio (d = 1). 

Further calculations for d = 0.5 and 0.2 reveal that 
the present numerical scheme accurately predicts the 
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(a) 

(b) 

(c) 

(d) 

(e) 

(~ 

J 

(h) ~ ~ - -  

(i) 

!' ) ~  '1 =, )j~l~i~\fj 
(i) 

(k) 

Fig. 3. Streamlines (left) and isotherms (right) for d = 1.0 (A0 = 0.05 for all cases) : (a), (g) Rap = Rape 
(AO=5.59x10 5);(b),(h) Rap= 1.1Rapc(A0=4.82x10 2) ; (c), (i) Rap = 1.5Rar~(A~k=3.53xlO ~); 
(d), (j) Rap=3Rapc (AO=7.88x10 ]); (e), (k) Rap= lORa~ (A~b= 1.38x10 °); (f), (1) Rap=2ORap~ 

(AO = 1.72 x 10°). 
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Fig. 4. Variation of the Nusselt number and the wavenumber 
with Rap/Ramc when d = 1.0. 

number of  recirculating cells at the onset point. The 
aspect ratios were selected as 5 and 2 for d = 0.5 and 
0.2, respectively. Figure 5(a) shows, for example, that 
the number of  cells is 10 for d = 0.2, and the cor- 
responding wavenumber,  13.09, is compared with the 
curve fit based on the linear stability theory in Fig. 
6. Again, the increase in Rap consistently produces 
additional cells, and the convective heat transfer mode 
is restricted in the fluid layer as depicted in Figs. 5(b), 
(c), (e) and (f). For  d = 0.5, the wavenumber from the 
present calculations is overpredicted by about  2.9% in 
comparison with the curve fit in Fig. 6. 

Sun [3] first studied the onset of  the thermal con- 
vection in a composite layer system. However,  he 
overlooked the bimodal nature of  the marginal sta- 
bility curve when d < 0.15, and later Chen and Chen 
[4] corrected his results. In particular, they uncovered 
the precipitous drop of  the critical Rap and the rapid 
change of  the critical wavenumber near d = 0.12 as 
shown in Fig. 6. The reason for such an abrupt change 
in the size of  recirculating cells is that the convection 
pattern is dominated by the fluid layer for d > 0.12, 
while the convection pattern is dominated by the 
porous layer for d < 0.12 with the cell size determined 
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(a) (d) 

~) 
@@@@@@@@@@@@ 

(e) 

@@@@@@@@@@@@ 
(c) (O 

Fig. 5. Streamlines (left) and isotherms (right) for d = 0.2 (A0 = 0.05 for all cases) : (a), (d) Rap = Rape 
(A~b = 1.69 x 10 -5) ; (b), (e) Rap = 2Rap~ (A~b = 4.39 x 10 -t) ; (c), (i) Rap = 3Rape (A~, = 6.51 x 10-t). 

q 

Wave Numbe't (Present Numerical R~mlls) 

~. k ~ w~'~ N'~[4] 

" ! 5.87 

o.o o.1 

o 

o. 

o. 
-g  

.* 

o. 
"2 

.*_. 

da 8.s ~ 8.5 d.e 8~ 8~ 8.~ ~.o 

DelXh Rmio 

Ra~ 

Fig. 6. Variation of the critical Nusselt number and the 
wavenumber with the depth ratio. 

by the porous layer depth. Consequently, the wave- 
number  changes almost tenfold at d = 0.12. Later they 
extended the study with experiments [5], and further 
calculated the Nusselt number  for d = 0.1 when 
1 <~ Rap/Ra~ <~ 20 using a combined Galerkin and 
finite difference method with the restriction of the 
computational  domain predetermined by the linear 
stability theory [7]. 

In the present investigation, we performed the cal- 
culations without restricting the computational  
domain. It should also be noted that 82 non-uniform 
grid points in the vertical direction were used based 
on careful numerical experiments, and the number  of 
grid points is substantially less than the 550 grid points 
used by Chen and Chert [7] for d = 0.1. A few aspect 
ratios were tested, and A = 10 is selected for this depth 
ratio with 164 grid points in the horizontal direction 
for the present calculations. When Rap/Rar~ = 1, an 
excessive number  of iterations (50 000) were required 
to capture the initial formation of recirculating cells. 
Further iterations did not  improve either the energy 
balance or the pattern of streamlines. The streamlines 
in Fig. 7(a) show the formation of six cells, and the 
corresponding isotherms in Fig. 8(a) indicate the con- 
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(b) 

(e) 

(d) 

(g) 

6 3 Fig. 7. Streamlines for d = 0.1 : (a) Rap = Rar~ (A~k = 5.95 × 10- ) ; (b) Rap = 1.5Rar~ (A~k = 3.85 x 10- ) ; 
(c) Rat, = 2Rar~ (A~b = 8.17 × 10 -1) ; (d) Rap = 3Ra~ (A~b = 1.46 x 10 °) ; (e) Rap = 5Rap~ 
(A~b = 2.27 x 10 °) ; (f) Rap = lORar,¢ (A~p = 3.93 x 10 °) ; (g) Ra~ = 15Ra~ (A~k = 4.64 × 10 °) ; (h) Rap_ 

= 20Rap~ (A¢ = 5.91 x 10 ). 

duc t ive  hea t  t r ans f e r  mode .  T h e  s t r eaml ines  clear ly 
d e m o n s t r a t e  t h a t  the  size o f  the  rec i rcu la t ing  cells is 
d e t e r m i n e d  by  the  th i ckness  o f  the  p o r o u s  layer,  i.e. 
the  n a t u r a l  c o n v e c t i o n  is d o m i n a t e d  by  the  p o r o u s  
layer.  T h e  c o r r e s p o n d i n g  w a v e n u m b e r ,  1.71, is some-  
w h a t  less t h a n  the  p red ic t ed  value ,  2.16, ca l cu la t ed  by  
the  l inear  s tabi l i ty  t h e o r y  because  o f  the  re la t ively  
l imi ted  space  for  the  size o f  the  rec i rcu la t ing  cell in  
c o m p a r i s o n  w i th  o t h e r  ca lcu la ted  cases.  

T h e  s u b s e q u e n t  ca l cu la t ions  for  RaptRa~ > 1  

ini t ia l ly  exh ib i t  the  increase  in the  n u m b e r  o f  recir-  
cu la t ing  cells as s h o w n  in  Figs.  7(b)  a n d  (c). Such  a 
t r e n d  was  p rev ious ly  o b s e r v e d  w h e n  d = 1 a n d  0.2. 
As  Rar,/Rar~ increases  f r o m  2 to  3, howeve r ,  the  n u m -  
be r  o f  cells unexpec t ed ly  decreases  f r o m  10 to  e igh t  as 
s h o w n  in  Fig.  7(d)  a n d  r e m a i n s  the  s ame  a t  Rap/ 
Rar~ = 5. As  Rap/Rar~ increases  to  10, the  n u m b e r  o f  
cells decreases  f u r t h e r  to  six. T h e n  the  n u m b e r  is b a c k  
to  e igh t  a t  Rap/Ra~ = 15, a n d  a g a i n  decreases  to  six 
a t  Rar,/Rar~ = 20. I t  is in t e res t ing  to  f ind  t h a t  the  recir-  
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(d) 

(f) 

(g) 

0a) 

Fig. 8. Isotherms for d = 0.1 (A0 = 0.05 for all cases) : (a) Rap = Rar~; (b) Rap = 1.5Ra~; (c) Rap = 2Ra~; 
(d) Rap = 3Ra~; (e) Rap = 5Rap:; (f) Rap = 10Ra~; (g) Rap = 15Rar~; (h) Rap = 20Rare. 

culating cells are continuously readjusting their posi- 
tions and sizes in the iterative process for each case 
when Rap i> 3 until the steady state is reached. Conse- 
quently, an excessive number of iterations were 
required to achieve an energy balance of less than 
1%. Even after satisfying the convergence and energy 
balance criteria, some of the figures are not symmetri- 
cal, as shown in Figs. 7(d)-(h) and 8(d)-(h). To ensure 
that the streamlines and isotherms truly represent the 
final steady state results, at least 10 000 more iterations 
were performed for all cases when Rap >1 3. 

Figure 9 shows the corresponding Nusselt number, 
and the change in Nu is quite dramatic due to the 
change in the number of cells. It should be noted that 
whenever there is a reduction in the number of cells, 
the trend of the curve significantly changes. In particu- 
lar, the Nusselt number remains nearly the same as 
Rap/Rar~ increases from 7.5 to 10 due to the reduction 
in the number of cells from eight to six. When Rap/Ra~ 
increases from 15 to 17.5, there is even a significant 
reduction in Nu. The Nusselt number computed by 
Chen and Chen [7] with the pre-determined wave- 
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Fig. 9. Variation of the Nusselt number with the Rayleigh 
number for d = 0.1. 

length is nearly the same as the present results only 
when Rap/Ra~ < 3. On the other hand, their Nusselt 
number prediction may not be appropriate for the 
present aspect ratio and/or higher values of Rap/Rape, 
although they successfully predicted the Nusselt num- 
ber for d - -  1 as explained earlier (see Fig. 4). It is 
worth mentioning that the change in Nu may not be 
as smooth as plotted in Fig. 9 because of the possible 
abrupt change in the number of cells with the increase 
of Rap/Rape. Substantially more calculations are 
required to verify such a phenomenon• 

In comparison with the experimental and numerical 
data [5, 7] as shown in Fig. 10, the present results 
slightly overpredict the Nusselt number at 
Rap/Rap~ = 1.25, 1.5 and 1.75. However, the Nusselt 
number is nearly the same as their numerical data at 
Rap/Rap~ = 2.0. Overall, the curve fit for the present 
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Fig. 10. Comparison of the present results of Nu with exper- 
imental and numerical data of Chen and Chen [7] when 

d= 0.1. 

numerical data is upwardly convex in contrast to the 
previous investigators' [7] concave curve fit based on 
the experimental data for the given Rap range (~< 2 
Ra~). With the consideration of the numerical results 
by Chen and Chen [7], shown in Fig. 9, the upwardly 
convex curve fit seems appropriate. More exper- 
imental data points for the higher values of Rap are 
necessary to determine the rate of change in Nu in this 
range. It should be noted that the previous exper- 
imental report [5] clearly indicated that the flow pat- 
tern is three-dimensional. Although the present and 
previous [7] numerical calculations assumed two- 
dimensional convection rolls, the calculated Nusselt 
numbers are in good agreement with the experimental 
data. In general, the heat transfer rate in porous media 
computed by assuming two-dimensional rolls shows 
an excellent agreement with the experimental data in 
which the flow pattern is three-dimensional. Conse- 
quently, the Nusselt number in the supercritical region 
shown in Fig. 9 would be in good agreement with the 
experimental data. It will be very interesting to verify 
the present computational results in Nu and the num- 
ber of cells experimentally for the range of the aspect 
ratio, 2 ~< Rap/Ra~ <~ 20. 

Throughout the present study, the isotherms indi- 
cate that flow patterns in the fluid and porous layers 
are apparently in phase, as shown in Figs. 3 and 5. On 
the other hand, Chen and Chen [7] found that the 
flow patterns are out of phase since a weak plume 
descends in the porous region caused by the ascending 
plume in the fluid region. It is evident that they 
reported higher Nu numbers than those obtained by 
the present study in the supercritical range (Figs. 4 
and 8) as discussed earlier. The higher heat transfer 
coefficients indicate more vigorously recirculating 
cells. Therefore, the flow patterns are out of phase 
because of the active momentum transfer along the 
interface. When the recirculating cells are less active, 
however, the isotherms are dominated by conduction. 
It should be noted that some of the flow patterns 
reported by Chen and Chen are also in phase (Figs. 
7(a)-(c) [7]). 

4. CONCLUSION 

The buoyancy-induced convection when a porous 
layer underlying a fluid layer is heated from below has 
been numerically investigated. The numerical scheme 
used in the present study was found to predict the 
wavenumber accurately at the onset of convection 
compared with the linear stability theory. In addition, 
interesting and important results were observed at 
the supercritical Rayleigh number regime. When 
d > 0.12, the number of recirculating cells increases 
continuously as the Rayleigh number increases, which 
in turn increases the Nusselt number. For this depth 
ratio range, convection is limited to the fluid layer, 
while conduction is the dominating heat transfer mode 
in the porous layer. 

For d = 0.1, however, the recirculating cells are 
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cont inuous ly  readjust ing their  posi t ions  and  sizes in 
the composi te  layer as the Rayleigh numbers  
increases. The n u m b e r  of  cells in the supercrit ical con-  
vection regime does not  increase monotonical ly .  The 
cor responding  Nussel t  n u m b e r  var ia t ion  is quite 
different f rom the previously repor ted numerical  
results with  the pre-determined computa t iona l  
doma in  by the l inear stability theory [7]. The present  
Nussel t  n u m b e r  var ia t ion  for d = 0.1 may not  be 
smooth  because of  the possible ab rup t  change  in the 
n u m b e r  of  cells with  the increase of  the Rayleigh num-  
ber in the supercrit ical region. This suggests the need 
for careful exper imental  work to identify the change  
in the Nussel t  n u m b e r  with respect to the Rayleigh 
n u m b e r  for d < 0.12. Finally,  it was verified tha t  the 
present  two-dimensional  calculat ions predict  reason- 
ably well the heat  t ransfer  rate in the case of  three- 
d imensional  na tu ra l  convect ion  in the composi te  layer 
heated  f rom below. 
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